New iron polyoxometalate - based catalysts for decontamination of HD and G agents

Nelya Okun, Chris Tarr, Lei Zhang and Craig Hill

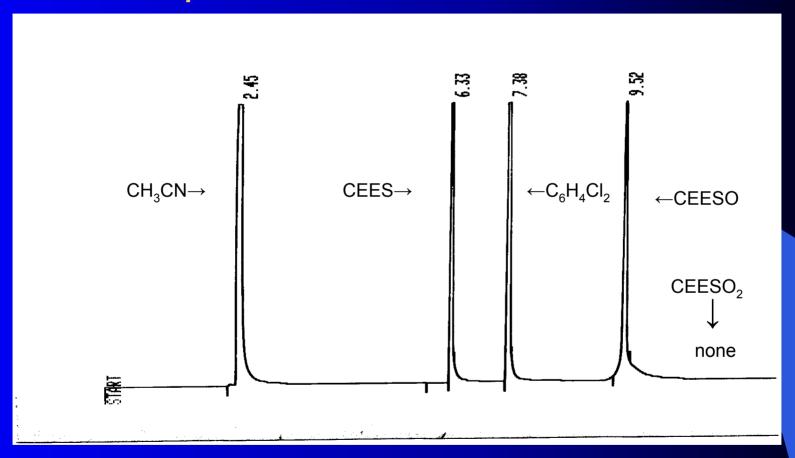
Department of Chemistry, Emory University, Atlanta, Georgia 30322

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington			
1. REPORT DATE 19 NOV 2003		2. REPORT TYPE N/A		3. DATES COVE	RED			
4. TITLE AND SUBTITLE		5a. CONTRACT I	NUMBER					
New iron polyoxometalate - based catalysts for decontamination of HD					5b. GRANT NUMBER			
and G agents		5c. PROGRAM ELEMENT NUMBER						
6. AUTHOR(S)		5d. PROJECT NUMBER						
					5e. TASK NUMBER			
					5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Department of Chemistry, Emory University, Atlanta, Georgia 30322				8. PERFORMING ORGANIZATION REPORT NUMBER				
9. SPONSORING/MONITO		10. SPONSOR/MONITOR'S ACRONYM(S)						
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited								
	otes 51, Proceedings of t Research, 17-20 No							
14. ABSTRACT								
15. SUBJECT TERMS								
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF					
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 20	RESPONSIBLE PERSON			

Report Documentation Page

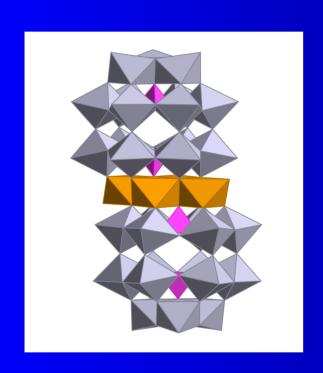
Form Approved OMB No. 0704-0188

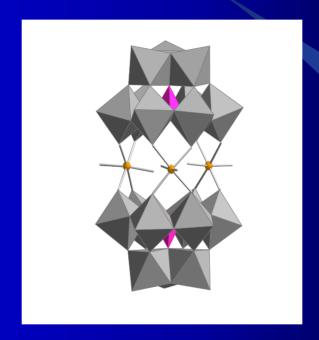
Outline of today's talk


- Iron containing POMs.
- Iron POM with terminally coordinate redoxactive ligand and the catalytic activity of this conjugate complex.
- Cationic silica nanoparticles "Si/AlO₂ⁿ⁺".
- Electrostatic binding of iron POMs to Si/AlO₂ⁿ⁺.
- Catalytic activity of iron POMs bound to Si/AlO₂ⁿ⁺.

New iron containing POMs

Recently developed iron containing polyoxometalates (POMs) are the most reactive catalysts yet for the rapid aerobic oxidation/ decontamination of mustard (HD) and the optimal simulant for HD, 2-chlorethyl ethyl sulfide, CEES. Only the ambient environment is required (air at room temperature). Turnover rates are high, selectivity to the desired sulfoxide is ~100%. and the most recent catalyst is very stable.


Exemplary reaction (stoichiometry, conditions)


Quantitative selectivity for minimally toxic sulfoxide product

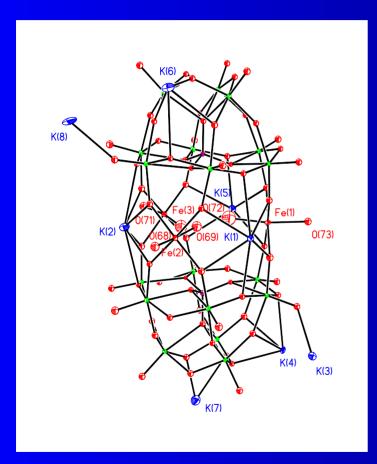
Conversions in all cases ultimately approach 100% also

Structures of recent catalytically active iron containing POMs

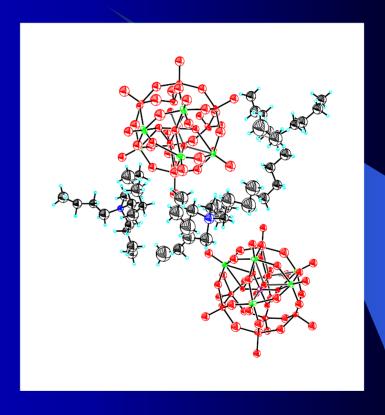
 $Fe(OH_2)_2Fe_2(P_2W_{15}O_{56})_2]^{12-}$

 $[(Fe(OH_2)_2)_3(A-\alpha-PW_9O_{34})_2]^{9-}$

 $[Fe_3(A-\alpha-PW_9O_{37}]^{6-}]$


T.M. Anderson, X. Zang, K.A. Hardcastle, C.L. Hill, Inorg. Chem. 2002, 41, 2477.

N.M. Okun, T.M. Anderson, C.L. Hill, J. Am. Chem. Soc. 2003, 125, 3194.

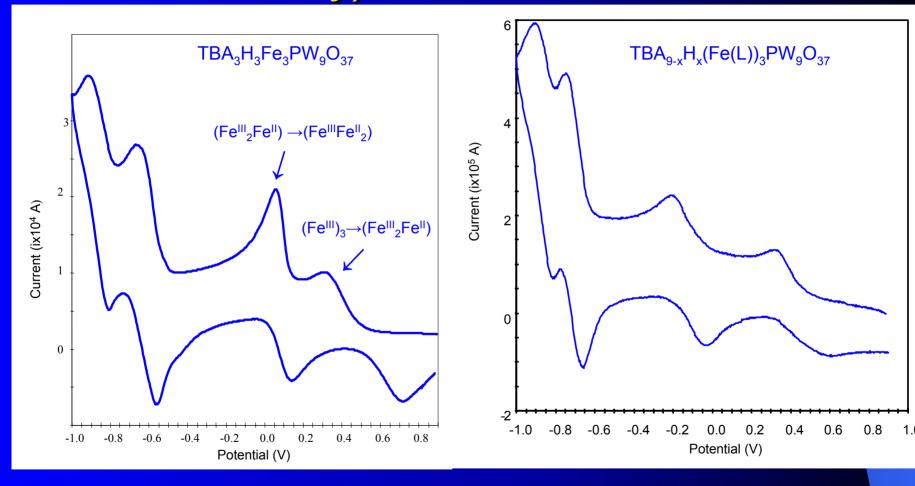

N.M. Okun, T.M. Anderson, C.L. Hill, J. Mol. Cat. 2003, 197, 283.

X-Ray structures

 $[(Fe(OH_2)_2)_3(A-\alpha-PW_9O_{34})_2]^{9-}$

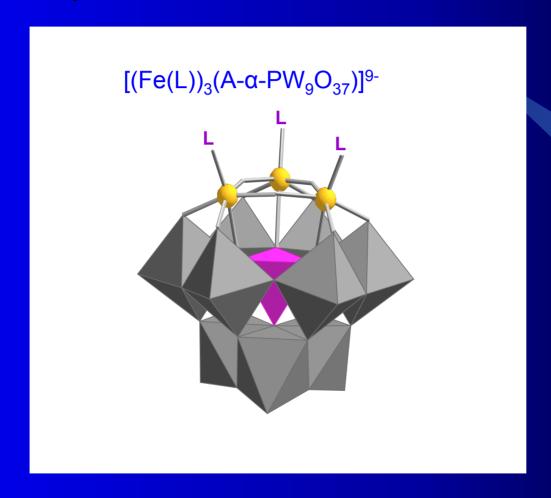


[Fe₃PW₉O₃₇]⁶⁻



R = 9.16

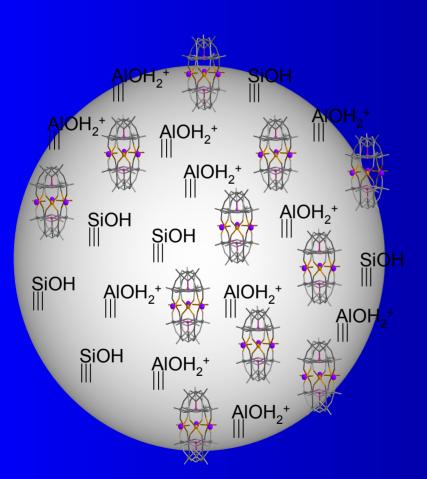
IR Spectra

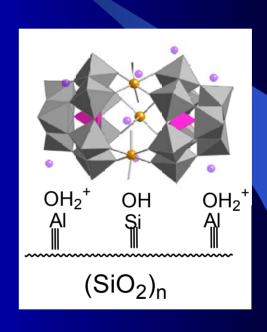


Redox potentials in solution (cyclic voltammetry)

Working electrode – glassy carbon; reference electrode – Ag/Ag⁺ (0.1 M in acetonitrile);auxiliary electrode – Pt; scan rate 50 mV s⁻¹; 23 °C; supporting electrolite – 0.1 M TBACIO₄.

Proposed structure of the conjugate complex




Aerobic sulfoxidation of 2-chloroethyl ethyl sulfide (CEES) in ~100% selectivity at 100% ultimate conversion catalysed by polyoxometalate (POM) and/or conjugate complex homogeneous catalysts at RT.^a

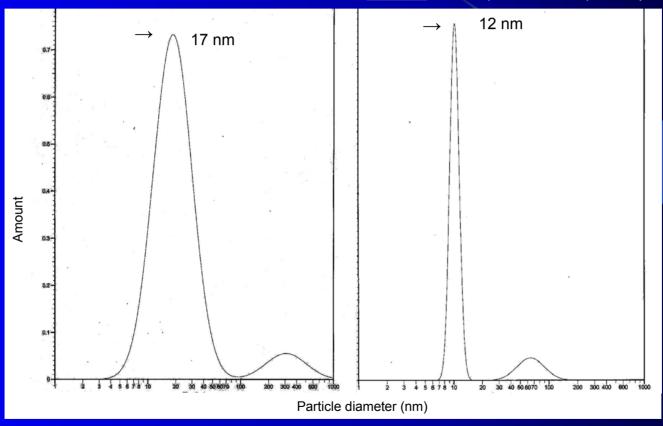
Catalyst	[catalyst] (mmol)	acidity ([OH]) ^b	aging time (days) ^c	TON ^d
TBA ₆ Fe ₃ PW ₉ O ₃₇	0.005	0.65	0	0
TBA ₆ Fe ₃ PW ₉ O ₃₇ + L	0.005	-	0	0
$TBA_{9-x}H_x(Fe(L))_3PW_9O_{37}$ (1)	0.005	-	0 (wet)	98
1	0.005	10.0	54	37

General conditions; ^a Acetonitrile solvent; [CEES]₀ = 0.875 mmol; RT; 1 atm of air; ^b[OH] = mmol of TBAOH/mmol POM used for titration; ^cdays of storage of POM on daylight; ^dtotal turnovers = moles of CEESO / moles of POM.

Illustration of the electrostatic association of {K₈[Fe₃(A-α-PW₉O₃₄)₂]}- monoanions with the cationic surfaces of the (Si/AlO₂)ⁿ⁺ nanoparticles

N.M. Okun, T.M. Anderson, C.L. Hill, J. Am. Chem. Soc. 2003, 125, 3194-3195.

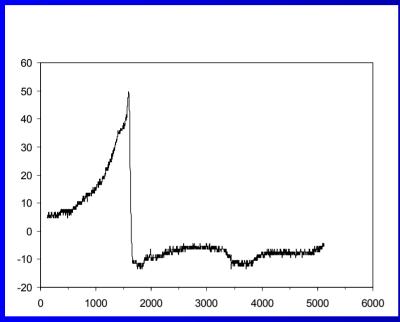
Methods used for characterization of new catalysts

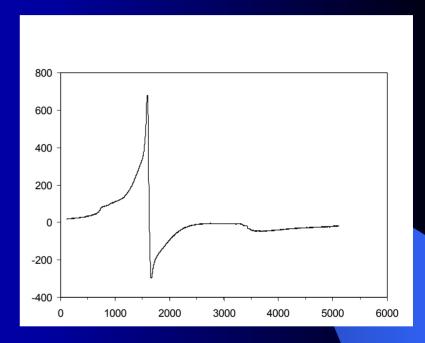

- Dynamic light scattering
- Elemental analysis, DRIFT, TGA, DSC
- Streaming potential
- Acid-base titration (PZC determination)
- Electron paramagnetic resonance
- Transmission electron microscopy
- cryo-High resolution scanning electron microscopy

Size distribution data by dynamic light scattering

 $K_8[Fe_3(A-\alpha-PW_9O_{34})_2]/(Si/AIO_2)$

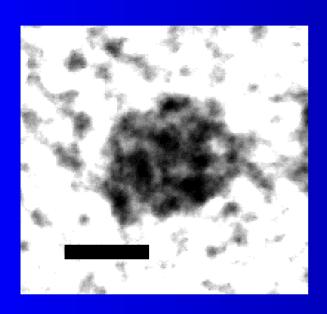
(Si/AIO₂)CI


Bindzil CAT® (Akzo Nobel) nanoparticles.

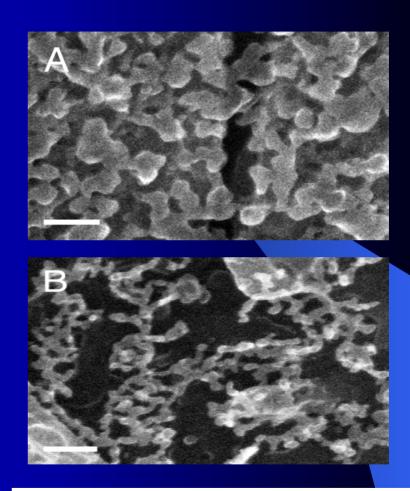

General conditions: 25 °C; diluent water; angle 90.0°C; SDP (size distribution processor) settings Min 1.0 nm, Max 100 nm; Number of Bins 31.

EPR spectra

 $K_9[Fe_3(A-\alpha-PW_9O_{34})_2]$


 $K_8[Fe_3(A-\alpha-PW_9O_{34})_2]/(Si/AIO_2)$

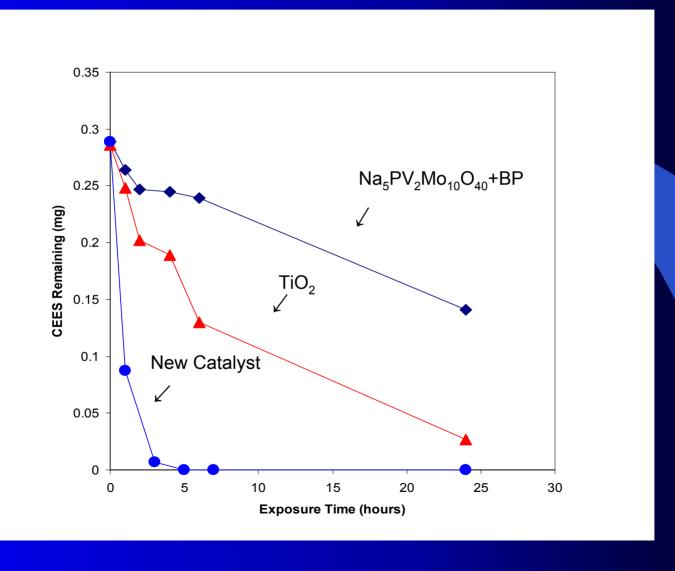
Conditions. 0.2 mmol of K₉[Fe₃(A-α-PW₉O₃₄)₂] free or bound to (Si/AlO₂) sonicated in 2 mL of light mineral oil. EPR spectra were recorded at 6 K using Brüker 200 spectrometer with a microwave frequency of 9.655 GHz and microwave power of 20 dB.


Conclusion: POM is structurally altered upon binding (the intensity of high-spin-ferric-like iron increased by an order of magnitude)

TEM and cryo-HRSEM

TEM image of an average-sized (~17 nm) particle of POM after catalysis. The sizing bar is 10 nm in length.

The dark spots of POM are more visible on the lighter background of the larger Si/AlO₂ nanoparticles.


Cryo-HRSEM of cationic silica ((Si/AlO₂)Cl) and $K_8[Fe_3(A-\alpha-PW_9O_{34})_2]/(Si/AlO_2)$. Both samples were aged 4 months prior to imaging.

Aerobic sulfoxidation of 2-chloroethyl ethyl sulfide (CEES) in 100% selectivity at 100% ultimate conversion catalysed by polyoxometalate (POM) and/or conjugate complex heterogeneous catalysts at RT.

Catalyst	POM (mmol)	TON		TOF	
		25 h	46 h	25 h	46 h
$TBA_{9-x}H_x(FeL)_3PW_9O_{37}$ (1)	0.005	98	114	4.9	2.5
(Si/AlO ₂)Cl (2)	0	0	0	0	0
TBA _{8-x} 1 /(Si/AlO ₂) (100 °C)	0.001	23	136	1	3
TBA _{8-x} 1 /(Si/AlO ₂) (150 °C)	0.001	5.3	30	0.2	0.6
(TBA6Fe3PW9O37 + L)/(Si/AlO2)	0.001	0	0	0	0

 $[CEES]_0 = 0.875 \text{ mmol}$

Catalytic activity of our most recent catalyst (New Catalyst). Data obtained at US Army Natick Soldier Center AMSSB-RSS-MS(N)

Conclusion

 The most effective (selective and fast) catalysts yet for air oxidation of mustard (HD) have been developed – Fe-containing POMs with terminally coordinate redox-active ligand in solution or bound to cationic silica nanoparticles.
 The "New Catalyst" will be reported only after patent is filed (next week).

Acknowledgements

- USAMRICD, US Army Natick Soldier Center AMSSB-RSS-MS
 (N) and the Army Research Office for support
 and
- Mr. P. Bergoo of Akzo Nobel
- Dr. V.H. Huynh
- Dr. Jameson
- Dr. K. Hardcastle
- Dr. R. Apkarian
- Dr. T. Anderson
- Ms. M. Ritorto
- Mr. Wade Neiwert